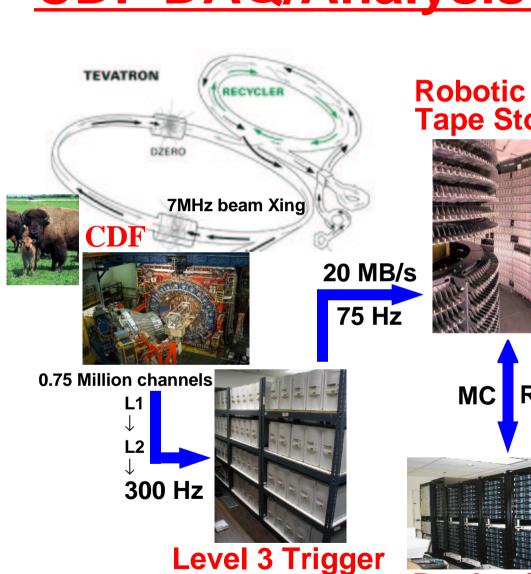


Distributed Computing at CDF

Frank Wurthwein


MIT/UCSD/FNAL-CD for the CDF Collaboration

- CDF Today
- PPDG activities today
- Future directions

CDF DAQ/Analysis Flow

(~250 duals)

Frank Wurthwein

Tape Storage

Recon

Production Farm (~150 duals)

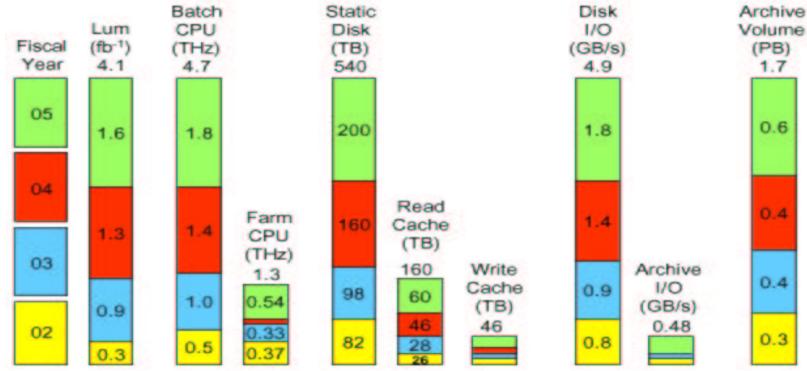
Analysis Data

Central Analysis Farm (CAF)

(~300 duals)

Data/Software Characteristics

Data Characteristics:


- > Root I/O: ~80-400 kB/event (configurable content)
- 'Standard' ntuple: 5-10 kB/event
- Typical Runlla secondary dataset size: 10⁷ events
- Winter03 physics: ~100 datasets adding up to ~50TB
- Largest dataset for Winter03 physics: 3.5e7 evts
- Expect twice the data for Summer03

Analysis Software:

- Typical analysis jobs run @ few Hz on 1 GHz P3
 - → few MB/sec
- CPU rather than I/O bound (FastEthernet)

Computing Requirements

Requirements set by goal:

200 simultaneous users to analyze secondary data set (10⁷ evts) in a day Need ~700 TB of disk and ~5 THz of CPU by end of FY'05:

2 Million \$\$\$ hardware budget/year

Computing Model

Interactive Computing on desktop:

Complete access to all data from desktop via dCache & rootd

Batch Computing on "remote" cluster(s):

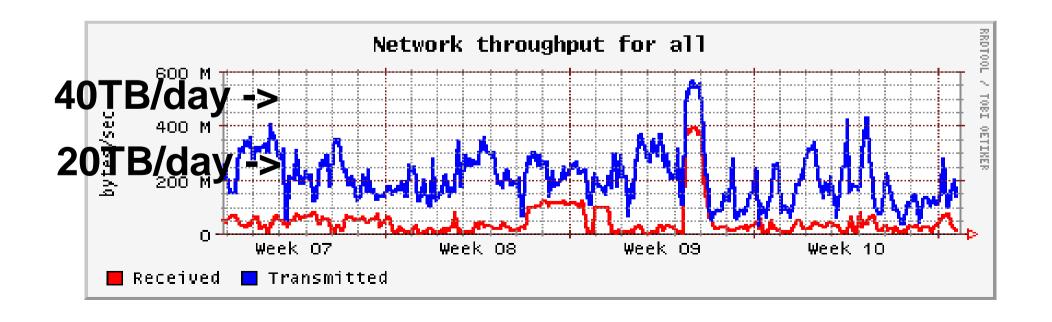
- Binary compatible with desktop
- > qsub, qstat, kill, ls, tail, top via command line/web
- Large scale parallelisation with single submission
 - → Single summary email upon completion
- User scratch space inside cluster
 - → Krb5 ticket created @ launch time
- Data access Winter03: 90% NFS+rootd, 10% dCache
- Summer03: 70% dCache, 30% NFS+rootd

User Analysis Today

Deployed Hardware @ FNAL:

- > ~180TB disk space, ~300TB data on tape
- > 600 user analysis CPUs (=1THz)
- > 100's of desktops & 2 central 8-ways & legacy smp & infrastructure HW like code servers, DB, www, ...

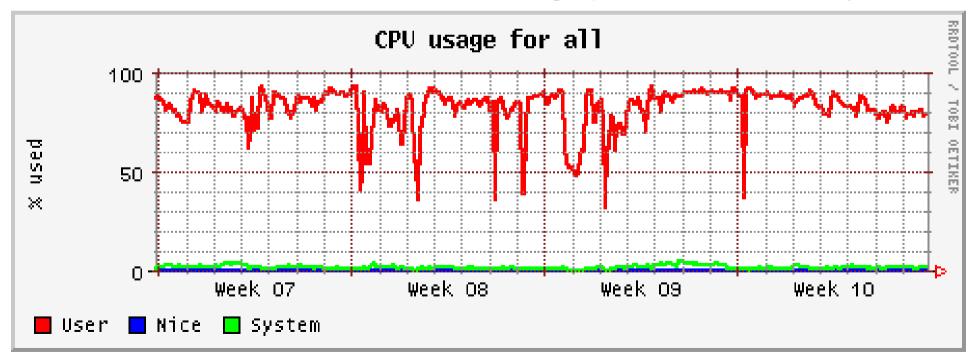
Hardware Organization:


- Central Analysis Farm (CAF) using FBSNG
- DH using dCache & NFS/rootd
 - ~54TB user scratch (rootd)
 - ~70TB dCache read pools
 - ~26TB NFS/rootd ("legacy")

CDF DH Today

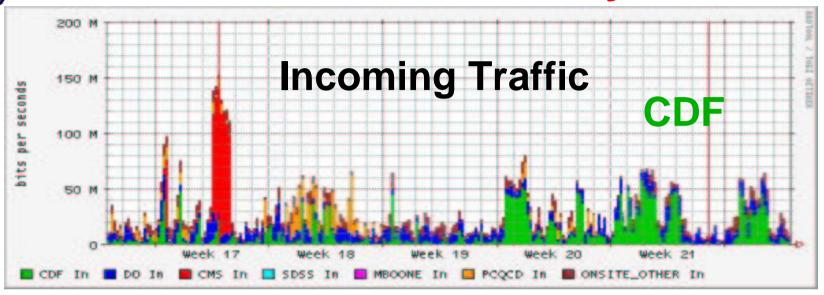
Caching Model for dCache:

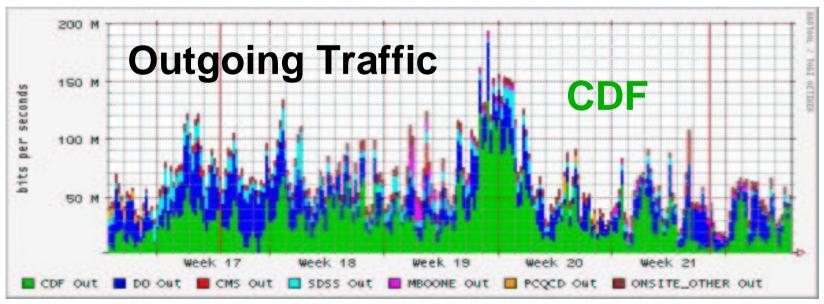
- > Golden cache: autoload, never delete
- Regular cache: strife for low cache miss rate
- Raw data: essentially a FIFO buffer
- Distinction is driven by physics goals


CAF utilization

User perspective:

- Up to 10,000 jobs/day
- > 400 users total
- > 100 users per day


System perspective:


- Up to 90% avg CPU utilization
- > 200-600MB/sec I/O
- Failure rate ~1/2000
- Avg uptime of WN = 60days

EDF

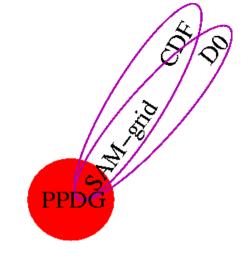
FNAL WAN Activity

Goals:

PPDG related activities

- Better support of offsite computing:
 - MC production (1Million evts/day capacity)
 - User analysis (few small sites, larger sites emerging)
- Co-scheduling of CPU and disk cache @ FNAL
- Better analysis tools support

Present PPDG related activities in CDF:


- > SAM-Grid: D0/CD/CDF joint project
 - SC2002: first physics analysis on sam-grid
- > SRM
 - SRM interface to dCache/Enstore to be used by SAM

SAM-grid @ CDF

- Continued deployment of v1
 - Stability & scalability testing
- Development of v2 functionality
 - Co-scheduling of CPU & data (based on Condor)
 - 'VO management'
 - Improved user interfaces & monitoring
- > SRM deployment
 - Sam-dCache integration
 - Stability & scalability testing
 - > Implement policies for user write access

SAM-grid = future of CDF computing

'Long term' Issues

- Need Improved analysis tools support:
 - Prod. software env: ~few Hz max
 - > Root 'ntuple': ~few 1000 Hz max
 - Interactive Grid Proposal
- GridPP related activities:
 - Distributed DB project
- Inter grid operability
 - Teragrid: Interactive Grid Proposal
 - Atlas/CMS: Idle non-US resources

Distributed DB Project

Implement DB as an abstract concept

- multiple DB types
- freeware slave DB
- Configurable update, incl. Slave triggered
- Use existing grid tools
- Transparent Client -> slave DB connection
- GUI based replication admin tool

1FTE requested via PPARC e-science interested in collaboration

contact: Rick St.Denis stdenis@fnal.gov

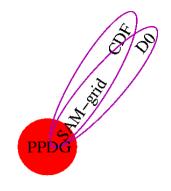
IntGrid Vision

- Multi-experiment (BaBar,CDF,CMS,D0, ...)
- Based on common analysis tool: root
- Based on Condor, Globus, SRM
- Build on activities out of CS-2,4,9,11
- Include Non-HEP site: Teragrid
- 2-3 year 2 FTE effort within ppdg
- production quality system for Summer Conf. each year.

Use HEP user community in R&D for general int. Grid principles

IntGrid Functionality

> User/client perspective:


- > Session start/data decl.: 1-2min
- > Simple query: ~10sec; ~10-20% duty cycle
- > 10-100 'slaves' per user/client
 - > Sanity check: 1e7evts * 10kB /(100slaves *10s) = 1Gb/sec
- up/down load of data & libs fro/to user
- > Automatic log on client node

'System' perspective:

- Global Resource Management (i.e. All clients)
- Co-location of 'slaves' with data -> memory cache
- Batch co-existence (managed suspend/resume)

Conclusion

CDF has excellent track record of deploying large distributed computing systems. Focused (mostly) on fabric issues so far.

Strong commitment to existing collaborative efforts with ppdg via D0/CD/CDF joint projects. Our focus is clearly on deployment of production systems.

New intGrid proposal that builds upon ppdg developments from CS-2,4,11.